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Performance optimisation defined

● Two things we wish to minimise:
– Latency in user experience

– Hardware capacity requirements (throughput)

● Each metric suggests a different approach



  

Performance optimisation defined

● Latency:
– Identify and eliminate causes of long request times.

– Request service time <100ms is "good enough", human 
perception gives diminishing returns.

● Throughput:
– Collect aggregate data on heaviest users of CPU, RAM, network 

and disk.

– Trade-off between hardware cost and software development 
cost.

– Stop optimising when the time spent fails to justify the reduced 
hardware expenditure.



  

Throughput analysis

● Each limited resource should be treated 
separately:
– Apache CPU

– MySQL CPU

– Peak memory usage

– Network volume

– Disk I/O

– Lock X held, Lock Y held, ...



  

Wall clock time

● Time as measured by the clock on the wall
● A good approximation to latency, but a poor 

approximation to hardware capacity.
● Example: disk seeks

– As load increases, average seek distance becomes 
shorter, and reads from the same track become 
more common

– Wall clock time at low load gives a poor indication of 
maximum capacity at high load 



  

CPU time

● Amount of time a CPU core spent executing 
the process in question (as opposed to waiting 
for some other resource)

● Includes system memory latency
● Easily measured with profiling tools



  

Profiling tools

● MediaWiki's profiler
● XDebug / KCacheGrind
● xhprof
● perf
● microtime()



  

MediaWiki's profiler

● Advantages:
– Section labels and lengths can be customised

– Can include application-level information in section 
name, like wfGetCaller()

– Suitable for production

● Disadvantages:
– High overhead

– Need to explicitly mark out sections with wfProfileIn()

– Double-counts recursive functions



  

MediaWiki's profiler



  

XDebug / KCachegrind

● Advantages:
– Times every PHP function

– Awesome visualisation

● Disadvantages:
– Crashy



  

xhprof

● Advantages:
– Times every PHP function

● Disadvantages:
– Buggy

– Web interface full of XSS vulnerabilities



  

perf

● A lower level (C function) view of process or 
system performance

● Replaces gprof
● Available in linux-tools-common



  

perf



  

report.py

● Simple aggregation of production profiling



  

Graphite

● Flexible time series graphing system for 
production profiling



  

microtime()

● Best for micro-optimisation
● Good stability of results

$ /usr/local/php-fast/bin/php eval.php
> wfMessage('1movedto2')->plain()

> $t = microtime(true); for ($i=0; $i<100000; $i++) 
{wfMessage('1movedto2')->plain();} print microtime(true)-$t;
2.3719320297241

> $t = microtime(true); for ($i=0; $i<100000; $i++) 
{wfMessage('1movedto2')->plain();} print microtime(true)-$t;
2.3795449733734

24µs per call

warm cache



  

Micro-optimisation

● Improve performance by optimising fast but 
frequently-called functions

● Minimise function call count
– 3µs per call is more expensive than just about 

anything

– Reduce abstraction

– Replace functions with operators, e.g. substr($s,
$i,1) with $s[$i]

– Save invariant function call results in local 
variables



  

Micro-optimisation
diff --git a/includes/Message.php b/includes/Message.php
index 531551d..2bc72c15 100644
--- a/includes/Message.php
+++ b/includes/Message.php
@@ -481,7 +481,9 @@ class Message {
        }

        # Replace parameters before text parsing
-       $string = $this->replaceParameters( $string, 'before' );
+       if ( $this->parameters ) {
+           $string = $this->replaceParameters( $string, 
'before' );
+       }

        # Maybe transform using the full parser
        if ( $this->format === 'parse' ) {

● And one other identical change for 
$type='after'



  

Micro-optimisation
$ /usr/local/php-fast/bin/php eval.php
> wfMessage('1movedto2')->plain()

> $t = microtime(true); for ($i=0; $i<100000; $i++) 
{wfMessage('1movedto2')->plain();} print microtime(true)-$t;
2.0254280567169

> $t = microtime(true); for ($i=0; $i<100000; $i++) 
{wfMessage('1movedto2')->plain();} print microtime(true)-$t;
2.0223109722137

> print (2.3795449733734 - 2.0223109722137) / 2.3795449733734
0.15012702224882

15% improvement for 5 minutes of work



  

Macro-optimisation

● Cache the results of expensive (>100ms) 
operations

● Avoid or defer unnecessary work
● Use an algorithm with an appropriate time 

order

// Split $s into lines with O(N^2) time order
$lines = array();
while ( strlen( $s ) ) {
    $nlPos = strpos( $s, "\n" );
    $lines[] = substr( $s, 0, $nlPos );
    $s = substr( $s, $nlPos + 1 );       // O(N)
}



  

PHP memory optimisation

● Arrays are expensive

● Objects are expensive

● Even variables are expensive (compared to C, 
anyway) 

$ gdb /usr/local/php-5.4.12-slow/bin/php
(gdb) print sizeof(Bucket)
$1 = 72
(gdb) print sizeof(HashTable)
$2 = 72

$ gdb /usr/local/php-5.4.12-slow/bin/php
(gdb) print sizeof(Bucket)
$1 = 72
(gdb) print sizeof(HashTable)
$2 = 72

(gdb) print sizeof(zval)
$4 = 24

(gdb) print sizeof(zend_object) + 
2*sizeof(HashTable)
$3 = 176



  

PHP memory optimisation

● Use iterators to avoid large array storage

● Use MySQL result objects directly
● Limit user input size where possible

foreach ( StringUtils::explode( "\n", $s ) as $line ) {
    ...
}



  

SQL optimisation

● Tends to be more theoretical, since 
measurement is harder

● Minimise:
– Number of rows scanned

– Lock acquisition rate

– Lock hold time

– Index size



  

Number of rows scanned

● Impacts CPU.
● Impacts memory usage due to COW 

references acquired.
● Impacts disk read rate and cache size 

requirements.



  

Number of rows scanned

● 100 rows: usually OK
● 100,000 rows: usually not OK
● Common culprits:

– SELECT COUNT(*)

– Partially unindexed queries



  

Locks

● Locks are on index nodes
● Acquired by write queries
● Released by COMMIT queries

// lock indexes referenced in $conds
$dbw->update( 'foo', $conds, $updates );
// hold for a while
sleep( 1 );
// release lock
$dbw->commit();



  

Locks

● Lock contention occurs when:

● Where:

– Rreq is the rate at which the lock is requested

– Thold is the time for which the lock is held

● The problem can be approached either by 
reducing the rate, or by reducing the hold time

Rreq≿
1
T hold



  

Locks

● In MW 1.20, Aaron introduced 
Database::onTransactionIdle(), which is an 
excellent tool for reducing lock hold times.

● The callback is invoked with the DB in 
autocommit mode

$dbw->onTransactionIdle( function() use ( $dbw, $method ) {
    global $wgRCMaxAge;

    $cutoff = $dbw->timestamp( time() - $wgRCMaxAge );
    $dbw->delete(
        'recentchanges',
        array( 'rc_timestamp < ' . $dbw->addQuotes( $cutoff ) ),
        $method
    );
} );



  

Index size

● Performance declines rapidly when indexes 
cannot fit in RAM

● Index on integers instead of strings where 
possible

● Remove or reject features which require large 
index sizes

● Use BINARY/VARBINARY not 
CHAR/VARCHAR



  

Getting your code deployed

● Write efficient code
● Choose awesome features that justify extra 

hardware expenditure
● Think about how your code will behave at 

scale
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