

MediaWiki Performance Techniques

Amsterdam Hackathon 2013

Performance optimisation defined

● Two things we wish to minimise:
– Latency in user experience

– Hardware capacity requirements (throughput)

● Each metric suggests a different approach

Performance optimisation defined

● Latency:
– Identify and eliminate causes of long request times.

– Request service time <100ms is "good enough", human
perception gives diminishing returns.

● Throughput:
– Collect aggregate data on heaviest users of CPU, RAM, network

and disk.

– Trade-off between hardware cost and software development
cost.

– Stop optimising when the time spent fails to justify the reduced
hardware expenditure.

Throughput analysis

● Each limited resource should be treated
separately:
– Apache CPU

– MySQL CPU

– Peak memory usage

– Network volume

– Disk I/O

– Lock X held, Lock Y held, ...

Wall clock time

● Time as measured by the clock on the wall
● A good approximation to latency, but a poor

approximation to hardware capacity.
● Example: disk seeks

– As load increases, average seek distance becomes
shorter, and reads from the same track become
more common

– Wall clock time at low load gives a poor indication of
maximum capacity at high load

CPU time

● Amount of time a CPU core spent executing
the process in question (as opposed to waiting
for some other resource)

● Includes system memory latency
● Easily measured with profiling tools

Profiling tools

● MediaWiki's profiler
● XDebug / KCacheGrind
● xhprof
● perf
● microtime()

MediaWiki's profiler

● Advantages:
– Section labels and lengths can be customised

– Can include application-level information in section
name, like wfGetCaller()

– Suitable for production

● Disadvantages:
– High overhead

– Need to explicitly mark out sections with wfProfileIn()

– Double-counts recursive functions

MediaWiki's profiler

XDebug / KCachegrind

● Advantages:
– Times every PHP function

– Awesome visualisation

● Disadvantages:
– Crashy

xhprof

● Advantages:
– Times every PHP function

● Disadvantages:
– Buggy

– Web interface full of XSS vulnerabilities

perf

● A lower level (C function) view of process or
system performance

● Replaces gprof
● Available in linux-tools-common

perf

report.py

● Simple aggregation of production profiling

Graphite

● Flexible time series graphing system for
production profiling

microtime()

● Best for micro-optimisation
● Good stability of results

$ /usr/local/php-fast/bin/php eval.php
> wfMessage('1movedto2')->plain()

> $t = microtime(true); for ($i=0; $i<100000; $i++)
{wfMessage('1movedto2')->plain();} print microtime(true)-$t;
2.3719320297241

> $t = microtime(true); for ($i=0; $i<100000; $i++)
{wfMessage('1movedto2')->plain();} print microtime(true)-$t;
2.3795449733734

24µs per call

warm cache

Micro-optimisation

● Improve performance by optimising fast but
frequently-called functions

● Minimise function call count
– 3µs per call is more expensive than just about

anything

– Reduce abstraction

– Replace functions with operators, e.g. substr($s,
$i,1) with $s[$i]

– Save invariant function call results in local
variables

Micro-optimisation
diff --git a/includes/Message.php b/includes/Message.php
index 531551d..2bc72c15 100644
--- a/includes/Message.php
+++ b/includes/Message.php
@@ -481,7 +481,9 @@ class Message {
 }

 # Replace parameters before text parsing
- $string = $this->replaceParameters($string, 'before');
+ if ($this->parameters) {
+ $string = $this->replaceParameters($string,
'before');
+ }

 # Maybe transform using the full parser
 if ($this->format === 'parse') {

● And one other identical change for
$type='after'

Micro-optimisation
$ /usr/local/php-fast/bin/php eval.php
> wfMessage('1movedto2')->plain()

> $t = microtime(true); for ($i=0; $i<100000; $i++)
{wfMessage('1movedto2')->plain();} print microtime(true)-$t;
2.0254280567169

> $t = microtime(true); for ($i=0; $i<100000; $i++)
{wfMessage('1movedto2')->plain();} print microtime(true)-$t;
2.0223109722137

> print (2.3795449733734 - 2.0223109722137) / 2.3795449733734
0.15012702224882

15% improvement for 5 minutes of work

Macro-optimisation

● Cache the results of expensive (>100ms)
operations

● Avoid or defer unnecessary work
● Use an algorithm with an appropriate time

order

// Split $s into lines with O(N^2) time order
$lines = array();
while (strlen($s)) {
 $nlPos = strpos($s, "\n");
 $lines[] = substr($s, 0, $nlPos);
 $s = substr($s, $nlPos + 1); // O(N)
}

PHP memory optimisation

● Arrays are expensive

● Objects are expensive

● Even variables are expensive (compared to C,
anyway)

$ gdb /usr/local/php-5.4.12-slow/bin/php
(gdb) print sizeof(Bucket)
$1 = 72
(gdb) print sizeof(HashTable)
$2 = 72

$ gdb /usr/local/php-5.4.12-slow/bin/php
(gdb) print sizeof(Bucket)
$1 = 72
(gdb) print sizeof(HashTable)
$2 = 72

(gdb) print sizeof(zval)
$4 = 24

(gdb) print sizeof(zend_object) +
2*sizeof(HashTable)
$3 = 176

PHP memory optimisation

● Use iterators to avoid large array storage

● Use MySQL result objects directly
● Limit user input size where possible

foreach (StringUtils::explode("\n", $s) as $line) {
 ...
}

SQL optimisation

● Tends to be more theoretical, since
measurement is harder

● Minimise:
– Number of rows scanned

– Lock acquisition rate

– Lock hold time

– Index size

Number of rows scanned

● Impacts CPU.
● Impacts memory usage due to COW

references acquired.
● Impacts disk read rate and cache size

requirements.

Number of rows scanned

● 100 rows: usually OK
● 100,000 rows: usually not OK
● Common culprits:

– SELECT COUNT(*)

– Partially unindexed queries

Locks

● Locks are on index nodes
● Acquired by write queries
● Released by COMMIT queries

// lock indexes referenced in $conds
$dbw->update('foo', $conds, $updates);
// hold for a while
sleep(1);
// release lock
$dbw->commit();

Locks

● Lock contention occurs when:

● Where:

– Rreq is the rate at which the lock is requested

– Thold is the time for which the lock is held

● The problem can be approached either by
reducing the rate, or by reducing the hold time

Rreq≿
1
T hold

Locks

● In MW 1.20, Aaron introduced
Database::onTransactionIdle(), which is an
excellent tool for reducing lock hold times.

● The callback is invoked with the DB in
autocommit mode

$dbw->onTransactionIdle(function() use ($dbw, $method) {
 global $wgRCMaxAge;

 $cutoff = $dbw->timestamp(time() - $wgRCMaxAge);
 $dbw->delete(
 'recentchanges',
 array('rc_timestamp < ' . $dbw->addQuotes($cutoff)),
 $method
);
});

Index size

● Performance declines rapidly when indexes
cannot fit in RAM

● Index on integers instead of strings where
possible

● Remove or reject features which require large
index sizes

● Use BINARY/VARBINARY not
CHAR/VARCHAR

Getting your code deployed

● Write efficient code
● Choose awesome features that justify extra

hardware expenditure
● Think about how your code will behave at

scale

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

